|
0
C
C
C
C
2
sin x
0
1
0
-1
0
cos x
1
0
-1
0
1
tg x
0
|
0
|
0
ctg x
|
0
|
0
|
Formula fundamentala:
sin
cos
tg
1
ctg
1
sin=cosx cos=sinx tg=ctgx ctgx=tgx |
tgx= ctgx= tgx= ctgx= secx= cosecx=
sinx+cosx=1
Formule provenite din formula fundamentala:
sinx= cosx= tgx= sinx= cosx= ctgx= sinx=1- cosx tgx= ctgx= cosx=1- sinx tgx= ctgx=
Functii trigonometrice:
f:[-1,1], f(x) = sinx f:[-1,1], f(x) = cosx f: , f(x) =tgx f: , f(x)= ctgx f:[-1,1] , f(x)= arcsin x f:[-1,1] , f(x)= arccos x f:, f(x)= arctg x f:, f(x)= arcctg x
sin(-x)
= - sinx cos(-x)
= cosx tg(-x)
= - tgx ctg(-x)
= - ctgx arcsin(-x)=
-arcsin x arccos(-x)=
-arccos x arctg(-x)=
-arctg x arcctg(-x)=
-arcctg x
Paritatea si imparitatea functiilor trigonometrice:
xarcsin(sinx)=x xarccos(cosx)=x xarctg(tgx)=x xarcctg(ctgx)=x
x[-1, 1]sin(arcsinx)=x x[-1, 1]cos(arccosx)=x xtg(arctgx)=x xctg(arcctgx)=x
Periodicitatea functiilor
trigonometrice:
sin(x+2k) = sinx cos(x+2k) = cosx tg(x+k) = tgx ctg(x+k) = ctgx, k
Reducerea la primul cadran: Deplasarea in punctul diametral opus:
xC: sinx=sin(- x) cosx=
- cos(- x) tgx
= - tg(- x) ctgx
= - ctg(- x) xC: sinx
= - sin(x - ) cosx
= - cos(x - ) tgx
= tg(x - ) ctgx
= ctg(x - ) xC: sinx
= - sin(2- x) cosx
= cos(2- x) tgx
= - tg(2- x) ctgx
= - ctg (2- x) x: sin(x - ) =sin(x+) = - sinx cos(x - ) = cos(x+) = - cosx tg(x - ) = tg(x+) = tgx ctg(x - ) = ctg(x+) = ctgx
sin(x+y)
= sinxcosy + cosxsiny cos(x+y)
= cosxcosy - sinxsiny tg(x+y)
= ctg(x+y)
= sin(x-y)
= sinxcosy - cosxsiny cos(x-y)
= cosxcosy + sinxsiny tg(x-y)
= ctg(x-y)
= sin2x
= 2sinxcosx cos2x
= cosx-sinx = =2cosx - 1 = = 1 - 2sinx tg2x
= ctg2x
= sin = cos = tg = ctg = cosx-1
= - 2sin cosx+1
= 2cos sin3x
= 3sinx - 4sinx cos3x
= - 3cosx + 4cosx tg3x
= ctg3x
=
Transformarea produselor in sume: Transformarea sumelor in produse:Substitutia
sinx+siny
= 2sin sinx-siny
= 2cos cosx+cosy
= 2cos cosx-cosy
= - 2sin tgx+tgy
= ; tgx-tgy = cosx
cosy = sinx
cosy = sinx
siny =
universala:
t
= tg sinx
= cosx
= tgx
= ctgx
= arctg
x arctg y = arctg
Functiile trigonometrice:
sinx
= a, a[-1, 1]x = (-1)arcsin a + k, kZ cosx
= a, a[-1, 1]x = arccos a + 2k, kZ tgx
= a, aRx = arctg a + k, kZ ctgx
= a, aRx = arcctg a+ k, kZ sinx
= sina, aRx = (-1)a + k, kZ cosx
= cosa, aRx = a + 2k, kZ tgx
= tga, aRx = a+k, kZ ctgx
= ctgx, aR x = a+k, kZ
Ecuatii trigonometrice:
arcsin
x +arccos x = arctg
x +arcctg x = sinx
= 0x = k, kZ cosx
= 0x = , kZ tgx
= 0x = k, kZ ctgx
= 0x = , kZ