Documente noi - cercetari, esee, comentariu, compunere, document
Documente categorii

Formule trigonometrice

FORMULE TRIGONOMETRICE

0

C

C



C

C

2

sin x

0


1


0


-1


0

cos x

1


0


-1


0


1

tg x

0


|


0


|


0

ctg x

|


0


|


0


|


 


Formula fundamentala:

sin

cos

tg

1

ctg

1

 

sin=cosx

cos=sinx

tg=ctgx

ctgx=tgx

 


tgx=

ctgx=

tgx=

ctgx=

secx=

cosecx=

 

sinx+cosx=1

 


Formule provenite din formula fundamentala:

sinx=

cosx=

tgx=

 

sinx=

cosx=

ctgx=

 

sinx=1- cosx

tgx=

ctgx=

 

cosx=1- sinx

tgx=

ctgx=

 


Functii trigonometrice:

f:[-1,1], f(x) = sinx

f:[-1,1], f(x) = cosx

f: , f(x) =tgx

f: , f(x)= ctgx

 

f:[-1,1] , f(x)= arcsin x

f:[-1,1] , f(x)= arccos x

f:, f(x)= arctg x

f:, f(x)= arcctg x

 

sin(-x) = - sinx

cos(-x) = cosx

tg(-x) = - tgx

ctg(-x) = - ctgx  

 

arcsin(-x)= -arcsin x

arccos(-x)= -arccos x

arctg(-x)= -arctg x

arcctg(-x)= -arcctg x

 


Paritatea si imparitatea functiilor trigonometrice:

xarcsin(sinx)=x

xarccos(cosx)=x

xarctg(tgx)=x

xarcctg(ctgx)=x

 


x[-1, 1]sin(arcsinx)=x

x[-1, 1]cos(arccosx)=x

xtg(arctgx)=x

xctg(arcctgx)=x

 
Periodicitatea functiilor

trigonometrice:

sin(x+2k) = sinx

cos(x+2k) = cosx

tg(x+k) = tgx

ctg(x+k) = ctgx,

k

 


Reducerea la primul cadran:  Deplasarea in punctul diametral opus:

xC:

sinx=sin(- x)

cosx= - cos(- x)

tgx = - tg(- x)

ctgx = - ctg(- x)

 

xC:

sinx = - sin(x - )

cosx = - cos(x - )

tgx = tg(x - )

ctgx = ctg(x - )

 

xC:

sinx = - sin(2- x)

cosx = cos(2- x)

tgx = - tg(2- x)

ctgx = - ctg (2- x)

 

x:

sin(x - ) =sin(x+) = - sinx

cos(x - ) = cos(x+) = - cosx

tg(x - ) = tg(x+) = tgx

ctg(x - ) = ctg(x+) = ctgx

 

sin(x+y) = sinxcosy + cosxsiny

cos(x+y) = cosxcosy - sinxsiny

tg(x+y) =

ctg(x+y) =

 

sin(x-y) = sinxcosy - cosxsiny

cos(x-y) = cosxcosy + sinxsiny

tg(x-y) =

ctg(x-y) =

 

sin2x = 2sinxcosx

cos2x = cosx-sinx =

=2cosx - 1 =

= 1 - 2sinx

tg2x =

ctg2x =

 

sin =

cos =

tg =

ctg =

 

cosx-1 = - 2sin

cosx+1 = 2cos

 

sin3x = 3sinx - 4sinx

cos3x = - 3cosx + 4cosx

tg3x =

ctg3x =

 


Transformarea produselor in sume: Transformarea sumelor in produse:Substitutia

sinx+siny = 2sin

sinx-siny = 2cos

cosx+cosy = 2cos

cosx-cosy = - 2sin

tgx+tgy = ; tgx-tgy =

 

cosx cosy =

sinx cosy =

sinx siny =

 
universala:

t = tg

sinx =

cosx =

tgx =    

ctgx =

 

arctg x arctg y = arctg

 


Functiile trigonometrice:

sinx = a, a[-1, 1]x = (-1)arcsin a + k, kZ

cosx = a, a[-1, 1]x = arccos a + 2k, kZ

tgx = a, aRx = arctg a + k, kZ

ctgx = a, aRx = arcctg a+ k, kZ

 

sinx = sina, aRx = (-1)a + k, kZ

cosx = cosa, aRx = a + 2k, kZ

tgx = tga, aRx = a+k, kZ

ctgx = ctgx, aR x = a+k, kZ

 
Ecuatii trigonometrice:

arcsin x +arccos x =

arctg x +arcctg x =

 

sinx = 0x = k, kZ

cosx = 0x = , kZ

tgx = 0x = k, kZ

ctgx = 0x = , kZ

 


biologie

botanica






Upload!

Trimite cercetarea ta!
Trimite si tu un document!
NU trimiteti referate, proiecte sau alte forme de lucrari stiintifice, lucrari pentru examenele de evaluare pe parcursul anilor de studiu, precum si lucrari de finalizare a studiilor universitare de licenta, masterat si/sau de doctorat. Aceste documente nu vor fi publicate.